HYDROMAGNETIC EQUATIONS OF A RAREFIED PLASMA

V. P. Milant'ev

The general hydromagnetic equations are obtained for a collisionless plasma, taking ac-
count of "magnetic viscosity" and thermal conductivity, when (1.2) holds, These equa-
tions are not closed since they contain the fourth moments. By computing these moments,
for example, by Grad's method, we can close the system of equations. A system of equa-
tions in two-dimensional theory is also given.

The form of the macroscopic equations of a rarefied plasma in a magnetic field depends strongly on
the procedure for ordering the physical variables. The Chew, Goldberger, Low (CGL) [1-4] ordering, the
ordering of the theory of finite Larmor radius [5-7], the low-density ordering [8], and others are known.
The appropriate expansion of the distribution function is frequently used to obtain the hydromagnetic equa~-
tions [1,3,7,9]. But a simpler method is to use the infinite chain of moment equations directly [4]. Grad's
modified moment method [10-12], which, however, has a number of deficiencies, is very close to this
method.

1. A closed series of macroscopic equations was obtained in [3] for the CGL ordering
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Here Q, wp are the cyclotron and plasma frequencies; w is a typical frequency of macrochanges; a,
Ap are the Larmor radius and Debye length; L is a typical macrolength. The order (1.1) implies that Q ~
wp. But in many practically important cases Q « Wp. The aim of this paper is to deduce the hydromag-
netic equations of a collisionless plasma for the ordering

0/Q~a]L~e<l, Qfuy~hp/a~p<<t (1.2)

The required equations are obtained directly from the infinite chain of moment equations by expand-
ing all the variables in series in the small parameters € and u, which are assumed to be independent.

A similar two-parameter expansion was used in [9], where the equations of the lowest approximation
in € and 8 (B is the ratio of the material pressure to the magnetic pressure) were obtained. In contra-
distinction to this expansion, (1.2) makes it possible, for example, to investigate the stability of the plasma
as a function of 8, We know [1,2] that the CGL expansion does not lead to a closed system of equations,
since these equations contain the vector for the heat flux (the third moment) along the magnetic field. To
determine the longitudinal heat flux requires knowledge of the fourth moments. To determine the latter we
need the fifth moments, ete. This difficulty is usually eliminated by neglecting the longitudinal heat fluxes
[3, 9] or by using so-called two~dimensional theory [3]. In these cases a closed system of equations is ob-
tained, suitable for physical applications.

2, As the initial system of equations we take the chain of moment equations obtained in a standard
manner from the Vlasov kinetic equation and the system of Maxwell's equations (cf, [4]). In these equations
the independent variables are (in standard notation)

E,B,p,uP,QR,...
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In place of these it is convenient to introduce the following variables:

V. Ey, B, e, p, uy, uy, plv Pra Saps \Qu{hﬂ e
Here
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= (¢c/B)[E 1_91] is the veloc1ty of electric drift; p|| = eje; : P = Pyy is the "longitudinal® pressure;

lé (I —eje;) : P = Y (Pyy + Pyg) is the "transverse” pressure; I is the unit tensor; aq g is the viscous
stress tensor with the properties oy = 0, Spo = 0, Qugy = exeg:(ey - Q) is the projection of the heat
flux tensor Q on the coordinate axes of the local coordinate system formed by a right-handed orthogonal

triplet of unit vectors e, ey, €3 (o, 5,y take the values 1, 2, 3).

In terms of the variables (2.1) the original system of equations takes the form
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In these equations we have omitted the subscript ¢ which enumerates the kind of the particles,

. B d d
J=‘Zean’aua’ G"?ZeanaQ Q=‘§{;, E=W+u'v, Vimv—elel'v
a o

2.2)

(2.3)

2.4)

(2.5)

(2.8)

@.7

2.9

2.9

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)
(2.15)

(2.16)



The abbreviation [...]S denotes the sum of terms obtained by cyclic permutation of the subscripts;
ab:ed is the double scalar product of the dyads ab and ¢d; q| and g are the heat energy fluxes in the
parallel and transverse directions

ql =",Q e€;, ql=1,0:(I--ee), q = QI
If we now write the equations in dimensionless form using typical scales (length L, time T, thermal

velocity v, etc.) and express all variables as expansions in a double series in € and 4, we can obtain
equations for the successive approximations,

3. In the zero-order approximation the tensors P, Q, R satisfy equations of the form

[Axe]* =0 (3.1

1t follows from these equations that in the zero-order approximation
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where R; =m (c}) R, = (m/2)<cﬁ ¢4y, Ry = (m/2) (c4), ¢ is the random velocity of the particles, (...) de-
notes statistical averaging.

Further, we see from (2.3) and (2.4) that in the zero-order approximation there is no electric field,
E|= 0, while the transverse velocity of the particles coincides with the electrical drift velocity
u =V (3.5)
To obtain the equation for the evolution of the longitudinal velocity u| we have to consider the first

approximation with respect to ¢ in Eq. (2.3)
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Further, in the zero-order approximation
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To this system we have to add further equations for E® and V, which in general have to be obtained

from (2.13) and (2.14), However, these equations contain first approximations in € for the currents, to de-
termine which we require equations for u in the first approximation with second approximations for the
electric field and the currents, ete. This difficulty can be avoided (cf. [3]). It follows from the general
equation for u that
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From this, in the first approximation in ¢ and the zero~order approximation in 4 we have
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since, as follows from (2.13) and (2.14),
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Now from the general equation for u it is easy to obtain
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The right side can be transformed in a standard manner using Maxwell's equations, affer which the
equation takes the form
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From this we have the zero-order approximation equation for V
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where o = Zpa.

Equations (3.5)-(3.13), (3.15), and (3.17) are the required equations of the zero-order approximation,
But they do not form a closed system, since they contain unknown fourth-order moments of R, In prin~
ciple we can write a general equation for R, but it contains fifth-order moments, etc, We can close the
above system by finding an approximate expression for R, for example, using Grad's method of moments
[10-12]:

PR =[{p (T —ee) +pee}{p, (I —ee)+ peed)’
4, We now consider the equations of the first~order approximation in ¢ and the zero~order approxi-

mation in # (omitting the subscript 0 in expansions in p). The first-order approximation for the equation
of continuity is

T+ Vep(u tuge) =0 @.1)

If we introduce the vector s, the "deficient" component of the transverse velocity u; = V + g, from
(2.4) in the first approximation we have
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The vector s includes the effect of the gradient, centrifugal, and other drift motions of the plasma
particles. The equation for V () is obtained from the general equation (3.16)
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Now there follow the equations
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Now it remains to determine the tensors P () and Q @) which describe the viscosity and thermal con-
ductivity of a collisionless plasma with a strong magnetic field, To find P® we have to use the first ap-
proximation equation (2.5):
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From this, after scalar multiplication by the appropriate dyads, constructed from the unit vectors
ey, €3, €3, there follow:
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If in these equations we replace de,/ 8 in accordance with (3.13), it is easy to obtain Macmahon's
equations [4] (cf. [12]).

The tensor Q(i) is determined by Eq. (2.8)
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From this we obtain (cf. [4])
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The components Qi(ﬁ ZQ" and (Qqz2 + Q33 (1) = 2(111 are described by Egs. (4.9) and (4.10). Equa-
tions (4.11) and (4.21) give apprommatlons of the Navier~Stokes type for the description of a collisionless
plasma in a strong magnetic field.

5. By two-dimensional theory we mean the special case when the lines of force of the magnetic field
are straight and remain straight as time passes. We only consider phenomena occurring in the plane per-
pendicular to the lines of force, i.e., we assume that
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Then in the zero-order approximation we obtain a quite simple series of eguations
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To an accuracy of order £2, u the equations of two~dimensional theory have the form
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The symbol ! indicates that the operator V acts only on V,

The system is not closed until we have determined R;, (0) From Grad's method of moments [12] we

can write

R =4p, /o

Then the above system of equations is closed. Using (4.11)-(4.15) it is easy to find that in two-

dimensional theory
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From this, in particular, there follow the familiar equations [13] for the components of v o® ina

cylindrical coordinate system.
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